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Abstract. In fair division problems, the notion of price of fairness mea-
sures the loss in welfare due to a fairness constraint. Prior work on the
price of fairness has focused primarily on envy-freeness up to one good
(EF1) as the fairness constraint, and on the utilitarian and egalitarian
welfare measures. Our work instead focuses on the price of equitability
up to one good (EQ1) (which we term price of equity) and considers
the broad class of generalized p-mean welfare measures (which includes
utilitarian, egalitarian, and Nash welfare as special cases). We derive
fine-grained bounds on the price of equity in terms of the number of
agent types (i.e., the maximum number of agents with distinct valua-
tions), which allows us to identify scenarios where the existing bounds
in terms of the number of agents are overly pessimistic.

Our work focuses on the setting with binary additive valuations, and
obtains upper and lower bounds on the price of equity for p-mean welfare
for all p � 1. For any fixed p, our bounds are tight up to constant factors.
A useful insight of our work is to identify the structure of allocations that
underlie the upper (respectively, the lower) bounds simultaneously for all
p-mean welfare measures, thus providing a unified structural understand-
ing of price of fairness in this setting. This structural understanding, in
fact, extends to the more general class of binary submodular (or matroid
rank) valuations. We also show that, unlike binary additive valuations,
for binary submodular valuations the number of agent types does not
provide bounds on the price of equity.

Keywords: Price of Fairness · Equitability · Optimal Welfare

1 Introduction

Tradeoffs are inevitable when we pursue multiple optimization objectives that
are typically not simultaneously achievable. Quantifying such tradeoffs is a fun-
damental problem in computation, game theory, and economics. Our focus in
this work is on the “price of fairness” in the context of fair division problems,
which is a notion that captures tradeoffs between fairness and welfare.
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Recall that a fair division instance in the discrete setting involves a set of
n agents N = {1, 2, . . . , n}, m indivisible goods M = {g1, . . . , gm}, and V :=
{v1, v2, . . . , vn}, a valuation profile consisting of each agent’s valuation of the
goods. For any agent i ∈ N , its valuation function vi : 2M → N ∪ {0} specifies
its numerical value (or utility) for every subset of goods in M . We will assume
that the valuations are normalised, that is, for all i ∈ N , vi(M) = W , where
W is the normalisation constant. Our goal is to devise an allocation of goods to
agents; defined as an ordered partition1 of the m goods into n “bundles”, where
the bundles are (possibly empty) subsets of M , and the convention is that the
ith bundle in the partition is the set of goods assigned to the agent i.

The welfare of an allocation is a measure of the utility that the agents derive
from the allocation. For additive valuations, the individual utility that an agent
i derives from their bundle Ai is simply the sum of the values that they have
for the goods in Ai. The overall welfare of an allocation A is typically defined
by aggregating individual utilities in various ways. Not surprisingly, there are
several notions of welfare corresponding to different approaches to consolidating
the individual utilities. For instance, the utilitarian social welfare is the sum
of utilities of agents under A; the egalitarian social welfare is the lowest utility
achieved by any agent with respect to A; and the Nash social welfare is the
geometric mean of utilities of agents under A. One may view all of these welfare
notions as special cases of the p-mean welfare (where p ∈ (−∞, 0)∪(0, 1]), which
is defined as the generalized p-mean of utilities of agents under A, i.e., Wp(A) :=
(
1
n

∑
i∈N

(
vi(Ai)

)p)1/p
. Note that for p > 1, the p-mean optimal allocation tends

to concentrate the distribution among fewer agents (consider the simple case of
two identical agents with additive valuations who value each of two goods at 1),
which is contrary to the spirit of fairness. Hence we focus on p � 1.

A natural goal for a fair division problem is to obtain an allocation that
maximizes the overall welfare. However, observe that optimizing exclusively for
welfare can lead to undesirable allocations. To see this, consider an instance
with additive valuations where all the valuation functions are the same, i.e.,
the utility of any good g is the same for all agents in N . In this case, every
allocation has the same utilitarian welfare. So, when we only optimize for—in
this example, utilitarian—welfare, we have no way of distinguishing between, say,
the allocation that allocates all goods to one agent and one that distributes the
goods more evenly among the agents. To remedy this, one is typically interested
in allocations that not only maximize welfare, but are also “fair”.

There are several notions of fairness studied in the literature. Consider an
allocation A = (A1, . . . , An). We say that A is envy-free (EF) if for any pair of
agents i and k, we have that i values Ai at least as much as they value Ak, i.e.,
vi(Ai) � vi(Ak); and equitable (EQ) if every pair of agents i and k value their
respective bundles equally, i.e., vi(Ai) = vk(Ak). While both these fairness goals
are natural, they may not be achievable, such as in a trivial instance with one
good valued positively by two agents. This has motivated several approximations,

1 Unless otherwise specified, we implicitly assume that allocations are complete, i.e.,
every good is assigned to some agent.
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and in particular, the notions of envy-freeness up to one good and equitability up
to one good have been widely studied. The allocation A is envy-free up to one
good (EF1) if for any pair of agents i, k ∈ N such that Ak �= ∅, there is a good
g ∈ Ak such that vi(Ai) � vi(Ak \ {g}). Analogously, A is equitable up to one
good (EQ1) if for any pair of agents i, k ∈ N such that Ak �= ∅, there is a good
g ∈ Ak such that vi(Ai) � vk(Ak \ {g}). For instances with additive valuations
(and somewhat beyond), EF1 (and, similarly, EQ1) allocations are guaranteed
to exist.

The price of fairness is informally the cost of achieving a specific fairness
notion, where the cost is viewed through the lens of a particular welfare concept.
For a fairness notion F (such as EQ1 or EF1) and a welfare notion W (such as
egalitarian or utilitarian welfare), the price of fairness is the “worst-case ratio” of
the maximum welfare (measured by W) that can be obtained by any allocation,
to the maximum welfare that can be obtained among allocations that are fair
according to F . For example, it is known from the work of Caragiannis et al. [15]
that under additive valuations, any allocation that maximizes the Nash social
welfare satisfies EF1. Thus, the price of fairness of EF1 with respect to Nash
social welfare is 1. Further,Barman et al. [5] show that the price of EF1 with
respect to utilitarian welfare is O(

√
n) for normalised subadditive valuations.

In this contribution, we focus on bounds for the price of fairness in the context
of EQ1, a notion that we will henceforth refer to as the price of equity (PoE)
when there is no ambiguity. Much of the existing literature on price of fairness
analysis focuses on specific welfare measures (e.g., utilitarian, egalitarian, and
Nash social welfare). Our work deviates from this trend by analyzing the entire
family of generalized p-mean welfare measures (i.e., for all p � 1); recall that
this captures the notions of egalitarian, utilitarian, and Nash welfare as special
cases. Our results therefore address the behavior of the PoE for a wide spectrum
of welfare notions.

Further, we obtain bounds in terms of the number of agent types—which
we denote by r—rather than the total number of agents. The number of agent
types of a fair division instance is the largest number of agents whose valuations
are mutually distinct: in other words, it is the number of distinct valuation
functions in the instance. Note that the number of agent types is potentially
much smaller than the total number of agents. The notion of agent types has
been popular in the fair division literature for the reason that it is a natural
quantification of the “simplicity” of the structure of the instance as given by
the valuations. Note that the well-studied special case of identical valuations is
equivalent to the class of instances for which r = 1, and therefore one might
interpret parameterizing by r as a smooth generalization of the case of identical
valuations. For a representative selection of studies that focus on instances with
a bounded number of agent types, we refer the reader to [10–12,22].

We restrict ourselves to the setting of binary submodular (also known as
matroid rank) valuations. A valuation function vi is submodular if for any subsets
of goods S, S′ ⊆ M such that S ⊆ S′, and for any good g �∈ S′, vi(S ∪ g)−vi(S) �
vi(S′ ∪g)−vi(S′). That is, the marginal value of adding g to S is at least that of
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Table 1. Summary of results for the price of equity (PoE). Each cell indicates either
the lower or the upper bound (columns) on PoE for a specific welfare measure (rows)
as a function of the number of agent types r. Our contributions are highlighted by
shaded boxes. The lower bounds are from Theorem 2, while the upper bounds are
shown in Theorem 3 and Theorem 4. The full version of the paper [9] presents the
upper and lower bounds graphically as a function of r, for p = 1, p = 0, p = −1, and
p = −10.

PoE
Agent types (r)

Lower bound Upper bound

Utilitarian welfare (p = 1) r − 1 r

Nash welfare (p = 0) (r−1)/e
ln(r−1)

(r−1)
ln(r−1)/e

Egalitarian welfare (p → −∞) 1 1 [34]

p ∈ (0, 1) p(r − 1)/e 2r − 1

p ∈ (−1, 0) 21/p(r − 1)1/(1−p) 2−1/p(−p)1/p(1−p)(r − 1)1/(1−p)

p � −1 21/p(r − 1)1/(1−p) 2(r − 1)1/(1−p)

adding g to a superset of S. Valuation vi is binary submodular if for any subset
of goods S ⊆ M and any good g, the marginal value vi(S ∪ g) − vi(S) ∈ {0, 1}.
Binary submodular valuations are frequently studied in fair division and are
considered to be a useful special case such as in allocating items under a budget,
or with exogenous quotas [7,36]. It also provides algorithmic leverage: many
computational questions of interest that are hard in general turn out to be
tractable once we restrict our attention to binary submodular valuations. As
an example, while it is NP-hard to compute a Nash social welfare maximizing
allocation even for identical additive valuations [30], such an allocation can be
computed in polynomial time under binary submodular valuations in conjunction
with other desirable properties such as strategyproofness, envy-freeness up to any
good, and ex-ante envy-freeness [4].

A strict subset of binary submodular valuations is the class of binary addi-
tive valuations—this is a subclass of additive valuations wherein each value vi(g)
is either 0 or 1. Binary additive valuations provide a simple way for agents to
express their preferences as they naturally align with the idea of agents “approv-
ing” or “rejecting” goods. These are also widely studied in the literature on fair
division, for example, see [1,3,4,25,29]. In the case of voting too, binary additive
valuations play a role. Darmann and Schauer [16] consider the complexity of max-
imizing Nash social welfare when scores inherent in classical voting procedures
are used to associate utilities with the agents’ preferences, and find that the case
of approval ballots—which happen to lead to binary additive valuations—are a
tractable subclass.

Our Contributions and Techniques

We now turn to a discussion of our findings (see Table 1 for a summary of our
results for binary additive valuations). Given an instance of fair division with
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binary submodular valuations, let A� be an allocation that maximizes the Nash
social welfare. It is implicit from the results of Benabbou et al. [7] that A� also
has maximum p-mean welfare for all p � 1 (for details, refer to Sect. 3.1). We
show an analogous result for EQ1 allocations, by demonstrating that there exists
an EQ1 allocation (which we call B, or the truncated allocation) that maximizes
the p-mean welfare for all p. To this end, in allocation A�, let i be an agent
with the minimum value, and let � = vi(A�

i ). If the allocation is not already
EQ1, then we reallocate “excess” goods from the bundles of agents who value
their bundles at more than � + 1 and give them to agent i. Notice that agent i
must have marginal value 0 for all these excess goods, otherwise this reallocation
would improve the Nash welfare. It turns out that this allocation B is EQ1 and
also has—among EQ1 allocations—the highest p-mean welfare.

Theorem 1 (�). For any p ∈ R∪{−∞} and binary submodular valuations, the
p-mean welfare of the truncated allocation B is at least that of any other EQ1
allocation.

Notice that together with the result of Benabbou et al. [7], Theorem 1 allows
us to focus only on the maximum Nash social welfare allocation A� and the
truncated allocation B to obtain upper bounds on the PoE for all p � 1 simul-
taneously.

We now describe our bounds on the PoE for binary additive valuations. Our
lower bounds are based on varying parameters in a single basic instance. The
parameters are r, the number of agent types, and W , the normalisation constant
for the agents. Given r and W , the instance has m = rW goods, divided into
r groups of W goods each. The groups are M1, M2, . . ., Mr. There are W + 1
agents who value all the goods in M1 at 1 each and everything else at 0. Further,
for each 2 � i � r, we have exactly one agent who values the goods in Mi and
nothing else. To summarize, we have W + 1 agents of the first type, who have a
common interest in W goods. Any allocation must leave one of these agents with
zero value. Beyond these coveted goods, each of the remaining goods is valued
by exactly one agent. A welfare maximizing allocation will allocate each good in
M2 ∪ · · · ∪ Mr to the unique agent who values it; however, an EQ1 allocation is
constrained by the fact that an agent of the first type must get value 0.2 It turns
out that using this family of instances, we can obtain the following bounds.

Theorem 2 (PoE lower bounds). Let s := r − 1. The price of equity for
binary additive valuations is at least:

1. s, for p = 1,
2. p

es, for p ∈ (0, 1),
3. s

e ln s , for p = 0,
4. 21/ps1/(1−p), for p < 0.
2 For p � 0, we use the standard convention that allocation A is a p-mean optimal

allocation if (a) it maximizes number of agents with positive value, and (b) among all
allocations that satisfy (a), maximizes the p-mean welfare when restricted to agents
with positive value.
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We now turn to the upper bounds for binary additive valuations. It turns
out that the PoE for utilitarian welfare is bounded by the rank of the instance,
where the rank is simply the rank of the n × m matrix {vi(gj)}1�i�n;1�j�m.
Observe that the rank is a lower bound for the number of agent types, so this
result also implies an upper bound of r on the PoE. In fact, the rank could be
logarithmic in the number of agent types, and hence this is a significantly tighter
bound than the number of agent types.

To obtain this upper bound, in allocation B (which, as shown in Theorem
1, maximizes the utilitarian welfare among EQ1 allocations) we show that the
number of wasted goods is at most m(1− 1

k ), where k is the rank of the instance.
This implies the theorem.

Theorem 3 ((�) Utilitarian PoE upper bound). Under binary additive
valuations and utilitarian welfare as the objective, the price of equity is at most
the rank of the instance.

Theorem 4 ((�) PoE upper bounds). Let s := r − 1. The price of equity for
binary additive valuations is at most

1. 1 + s for p = 1
2. 1 + 2s for p ∈ (0, 1)
3. s

ln(s/e) for p = 0 (i.e., the Nash social welfare)
4. s1/(1−p)2−1/p(−1/p)1/p(p−1) for p ∈ (−1, 0)
5. 2s1/(1−p) for p � −1

We note that for any fixed p, the lower bounds (Theorem 2) and upper bounds
(Theorem 4) are within a constant factor of each other.

Conceptually, for the proof of the upper bounds, we show that the worst case
for the PoE is in fact the family of instances used for showing our lower bounds
in Theorem 2. In particular, any instance can be transformed into one belonging
to the lower bound family, without improving the PoE. Note that for the PoE,
we can focus on the allocations A� and B irrespective of the p-mean welfare
measure, since these maximize the p-mean welfare for all p � 1 simultaneously.
For a given instance, let l be the minimum value of any agent in A�. We divide
the agent types into two groups: types for which every agent has value at most
l + 1 in A�, and types for which an agent has value > l + 1. Note that for a
type in the first group, each agent of this type retains its value in B, while for
a type in the second group, the value of each agent of this type is truncated to
l + 1. Our proof shows that agents in the first group must have total value at
least W , as in the lower bound example. We also use W as an upper bound for
the total value of each agent type in the second group. Then letting α be the
fraction of agents in the first group, and optimizing over α, gives us the required
upper bounds.

We then consider the PoE for binary additive valuations with the additional
structure that both the rows and the columns are normalised. That is, each agent
values exactly W goods, and each good is valued by exactly Wc agents. For such
doubly normalised instances, we show the PoE is 1.
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Theorem 5. For doubly normalised instances under binary additive valuations,
the PoE for the p-mean welfare is 1 for all p � 1.

Finally, we obtain bounds on the PoE for binary submodular valuations. For
identical valuations, it follows from similar results for EF1 that the PoE is 1.

Proposition 1 (�). When all agents have identical binary submodular valua-
tions, the PoE is 1 for p-mean welfare measure for all p � 1.

However, this is the best that can be obtained, in the sense that even with
just two agent types, the PoE for utilitarian welfare is at least n/6, where n is
the number of agents. Hence we cannot obtain bounds on the PoE that depend
on the number of agent types, as we did for binary additive valuations.

Theorem 6 (�). The PoE for utilitarian welfare when agents have binary sub-
modular valuations is at least n/6 (where n is the number of agents), even when
there are just two types of agents.

Nonetheless, we do obtain an upper bound of 2n on the PoE for binary
submodular valuations.

Theorem 7 (�). For binary submodular valuations and any p � 1, the PoE for
p-mean welfare is at most 2n.

Related Work

The notion of price of fairness was proposed in the works of Bertsimas et al.
[8] and Caragiannis et al. [14]. These formulations were inspired from similar
notions in game theory—specifically, price of stability and price of anarchy—
that capture the loss in social welfare due to strategic behavior.3 Caragiannis et
al. [14] studied the price of fairness for divisible and indivisible resources under
three fairness notions: proportionality [33], envy-freeness [19,21], and equitabil-
ity [17]. For indivisible resources, they defined price of fairness only with respect
to those instances that admit some allocation satisfying the fairness criterion.

Recently, Bei et al. [6] studied price of fairness for indivisible goods for fairness
notions whose existence is guaranteed; in particular, they studied envy-freeness
up to one good (EF1) and maximum Nash welfare allocations.4 In a similar
vein, Sun et al. [35] studied price of fairness for allocating indivisible chores
for different relaxations of envy-freeness and maximin share. Perhaps closest to

3 Price of anarchy was defined by Koutsoupias and Papadimitriou [24] and subse-
quently studied in the notable work of Roughgarden and Tardos [31], while price of
stability was defined by Anshelevich et al. [2].

4 The EF1 notion was formulated by Budish [13] although subsequently it was observed
that an algorithm of Lipton et al. [26] achieves this guarantee for monotone valua-
tions. The Nash social welfare function was originally proposed in the context of the
bargaining problem [28] and subsequently studied for resource allocation problems
by Eisenberg and Gale [18].
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our work is a recent paper by Sun et al. [34]. This work studies PoE and price
of equitability for any item (EQX) for indivisible goods as well as indivisible
chores under utilitarian and egalitarian welfare. The valuations are assumed to
be additive but not necessarily binary. For indivisible goods, the PoE is shown to
be between n − 1 and 3n, where n is the number of agents, while for egalitarian
welfare, a tight bound of 1 is provided.

2 Preliminaries

Problem Instance. An instance of the fair division problem is specified by
a tuple 〈N,M,V〉, where N = {1, 2, . . . . , n} is a set of n ∈ N agents, M =
{g1, . . . , gm} is a set of m indivisible goods, and V := {v1, v2, . . . , vn} is the
valuation profile consisting of each agent’s valuation function. For any agent
i ∈ N , its valuation function vi : 2M → N ∪ {0} specifies its numerical value (or
utility) for every subset of goods in M . For simplicity, for a valuation function
v, we will denote v({g}) as v(g).

Agents i and j are said to be of the same type if their valuation functions are
identical, i.e., if for every subset of goods S ⊆ M , vi(s) = vj(S). We will use r to
denote the number of distinct agent types in an instance. Further, an instance
is normalised if for some constant W , vi(M) = W for all agents i. Our work
focuses on instances with normalised valuations, since there are trivial instances
where the PoE for any p-mean welfare for p ∈ R is large without this assumption
(e.g., the simple instance with 2 agents and k goods, where agent 1 has value 1
for the first good and zero for the others, and agent 2 has value 1 for all goods,
has PoE k/3 for the utilitarian welfare).

Classes of Valuation Functions. A valuation function v is:

– monotone if for any two subsets of goods S and T such that S ⊆ T , we have
v(S) � v(T ),

– monotone submodular (or simply submodular) if it is monotone and for any
two subsets of goods S and T such that S ⊆ T and any good g ∈ M \ T , we
have v(S ∪ {g}) − v(S) � v(T ∪ {g}) − v(T ),

– additive if for any subset of goods S ⊆ M , we have v(S) =
∑

g∈S v(g),
– binary submodular (or matroid rank) if it is submodular and for any subset

S ⊆ M and any good g ∈ M \ S, we have v(S ∪ {g}) − v(S) ∈ {0, 1}, and
– binary additive if it is additive and for any good g ∈ M , v({g}) ∈ {0, 1}.

The containment relations between these classes are as follows:

Binary additive ⊆ Additive ⊆ Submodular ⊆ Monotone

and

Binary additive ⊆ Binary submodular ⊆ Submodular ⊆ Monotone.

The domains of additive and binary submodular valuations are incomparable in
the sense that an instance belonging to one class may not belong to the other.



The Price of Equity with Binary Valuations and Few Agent Types 279

We will primarily focus on binary submodular valuations in Sect. 3 and 7, and
on binary additive valuations in Sect. 4, 5, and 6.

Allocation. A bundle refers to any (possibly empty) subset of goods. An allo-
cation A := (A1, . . . , An) is a partition of the set of goods M into n bundles;
here, Ai denotes the bundle assigned to agent i. Given an allocation A, we say
that agent i values good g if vi(Ai ∪ {g}) > vi(Ai \ {g}). Thus if g ∈ Ai, then
removing g decreases i’s value. Else, assigning g to Ai increases i’s value. For
additive valuations, specifying an allocation is unnecessary, and we say i values
g if vi({g}) = 1. Further, for an allocation A, we say a good g ∈ Ai is wasted if
vi(Ai \ {g}) = vi(Ai), i.e., if removing it does not change the value of agent i.
For additive valuations, this implies that vi(g) = 0. We say an allocation (pos-
sibly partial) is wasteful if some good is wasted (and is non-wasteful or clean
otherwise). If A is a clean allocation, then for binary submodular valuations, for
each agent i, vi(Ai) = |Ai|.
Fairness Notions. An allocation A = (A1, . . . , An) is said to be:

– envy-free (EF) if for any pair of agents i, k ∈ N , we have vi(Ai) � vi(Ak) [19,
21],

– envy-free up to one good (EF1) if for any pair of agents i, k ∈ N such that
Ak �= ∅, there is a good g ∈ Ak such that vi(Ai) � vi(Ak \ {g}) [13,26],

– equitable (EQ) if for any pair of agents i, k ∈ N , we have vi(Ai) = vk(Ak) [17],
and

– equitable up to one good (EQ1) if for any pair of agents i, k ∈ N such that
Ak �= ∅, there is a good g ∈ Ak such that vi(Ai) � vk(Ak \ {g}) [20,23].

Pareto Optimality. An allocation A = (A1, . . . , An) is said to be Pareto
dominated by another allocation B = (B1, . . . , Bn) if for every agent i ∈ N ,
vi(Bi) � vi(Ai) and for some agent k ∈ N , vk(Bk) > vk(Ak). A Pareto optimal
allocation is one that is not Pareto dominated by any other allocation.

Welfare Measures. We will now discuss various welfare measures associated
with an allocation A.

– Utilitarian social welfare is the sum of utilities of agents under A, i.e.,
Wutil(A) :=

∑
i∈N vi(Ai).

– Egalitarian social welfare is the utility of the least-happy agent under A, i.e.,
Wegal(A) := mini∈N vi(Ai).

– Nash social welfare is the geometric mean of utilities of agents under A, i.e.,
WNash(A) := (Πi∈Nvi(Ai))

1/n, and
– for any p ∈ R, the p-mean welfare is the generalized p-mean of utilities of

agents under A, i.e., Wp(A) :=
(
1
n

∑
i∈N vp

i (Ai)
)1/p.

For any p ∈ R, the p-mean welfare is a strictly increasing, symmetric function
of the agent values. It can be observed that utilitarian, egalitarian, and Nash
welfare are all special cases of p-mean welfare for p = 1, p → −∞, and p → 0,
respectively [27].
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Given an instance, it may be that in every allocation, some agent gets zero
value. In this case, we need to redefine the p-mean welfare. We fix a largest
subset of agents S that can simultaneously get positive value in an allocation,

and then define Wp(A) =
(

1
|S|

∑
i∈S vp

i (Ai)
)1/p

. This follows prior work on the
Nash welfare, e.g., [7,15].

A leximin allocation is one which maximizes the minimum utility, then sub-
ject to that, it maximizes the second minimum, and so on. Thus a leximin
allocation also maximizes the egalitarian welfare.

Price of Fairness. Given a fairness notion F (e.g., EF1, EQ1) and a p-mean
welfare measure, the price of fairness of F with respect to a welfare measure Wp

is the supremum over all fair division instances with n agents and m goods of
the ratio of the maximum welfare (according to Wp) of any allocation and the
maximum welfare of any allocation that satisfies F .

Formally, let In,m denote the set of all fair division instances with n agents
and m items. Let A(I) denote the set of all allocations in the instance I, and
further let AF (I) denote the set of all allocations in the instance I that sat-
isfy the fairness notion F . Then, the price of fairness (PoF) of the fairness
notion F with respect to the welfare measure Wp is defined as PoF(F ,Wp) :=
supI∈In,m

maxA∗∈A(I) Wp(A
∗)

maxB∈AF (I) Wp(B) .

As indicated earlier, throughout this paper we will focus on equitability up to
one good (EQ1) as the fairness notion of choice (i.e., F is EQ1). For notational
simplicity, we will just write PoF instead of PoF(F ,W) whenever the welfare
measure W is clear from context, and we will refer to this ratio as the price of
equity (PoE) whenever the fairness notion in question is EQ1.

2.1 Some Properties of p-Mean Welfare

We state here some basic properties of the p-mean welfare that will be useful.
For the proof of the results marked �, we refer the reader to the full version of
the paper [9].

Claim 1 (�). For all p < 1, the p-mean welfare is a concave function of the
agent valuations.

Corollary 1. Given a vector of values for n agents x ∈ R
n
+ and a subset S ⊆ N

of agents, let x′ be the vector where x′
i = xi if i �∈ S, and x′

i =
∑

j∈S xj/|S| if
i ∈ S. Then for all p � 1,

(
1
n

∑n
i=1(xi)p

)1/p �
(
1
n

∑n
i=1(x

′
i)

p
)1/p i.e., averaging

out the value for a subset of agents weakly increases the p-mean welfare.

Claim 2 (�). Given l ∈ N, and a vector (x1, . . . , xl) ∈ R
l
+, for p ∈ [0, 1],

1
l

∑l
i=1 x1−p

i �
(

1
l

∑l
i=1 xi

)1−p

while for p < 0, the opposite inequality holds.
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3 Optimal Allocations for Binary Submodular Valuations

We first show that for obtaining bounds on the PoE for the class of binary sub-
modular valuations (and hence, for binary additive valuations), we can focus on
two allocations: the first is the Nash welfare optimal allocation A�, which obtains
the optimal p-mean welfare for all p � 1, and the second is the truncated allo-
cation B, which obtains the optimal p-mean welfare among all EQ1 allocations
for all p ∈ R ∪ {−∞}.

3.1 An Optimal p-Mean Welfare Allocation

Benabbou et al. [7] show the following results.

Proposition 2 ([7], Theorem 3.14). Let Φ : Zn → R be a symmetric strictly
convex function, and let Ψ : Z

n → R be a symmetric strictly concave func-
tion. Let A be some allocation. For binary submodular valuations, the following
statements are equivalent:

1. A is a minimizer of Φ over all the utilitarian optimal allocations,
2. A is a maximizer of Ψ over all the utilitarian optimal allocations,
3. A is a leximin allocation, and
4. A maximizes Nash social welfare.

Proposition 3 ([7], Theorem 3.11). For binary submodular valuations, any
Pareto optimal allocation is utilitarian optimal.

For p � 1, if the p-mean welfare function was strictly concave, then it would
follow immediately that the Nash welfare optimal allocation A� in fact simul-
taneously maximizes the p-mean welfare for all p � 1. However, in general the
p-mean welfare is concave (Claim 1), but not strictly concave. E.g., for any
p � 1 and any vector of values v = (v1, . . . , vn) with vi > 0 for all agents
i, let us overload notation slightly and define Wp(v) =

(
1
n

∑n
i=1 vp

i

)1/p. Then
Wp(2v) = (Wp(v) + Wp(3v))/2, violating strict concavity. However, we can
slightly modify the proof of Theorem 3.14 from [7], to obtain the following result.
The modified proof is in the full version [9].

Proposition 4 (�). For binary submodular valuations, any Nash welfare max-
imizing allocation (and hence, leximin allocation) simultaneously maximizes the
p-mean welfare for all p � 1.

The following property of leximin allocations is useful in the proof of Propo-
sition 4.

Proposition 5 (�). For agents with binary submodular valuations, let A be a
utilitarian optimal allocation so that maxi vi(Ai) � mini vi(Ai) + 1. Then A is
a leximin allocation.
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3.2 An Optimal p-Mean Welfare EQ1 allocation

We now show that similarly, there exists an EQ1 allocation B that maximizes the
p-mean welfare for all p. Given A�, allocation B is obtained as follows, which we
call the truncated allocation. Let l = mini vi(A�

i ) be the smallest value that any
agent obtains in A�, and let il be an agent that has this minimum value. Note
that for any agent i, if vi(A�

i ) � l + 2, then all goods allocated to i must have
marginal value 0 for the agent il, i.e., for all g ∈ A�

i , vil(A
�
il

∪{g}) = vil(A
�
il
) (else

we can increase the Nash social welfare by re-allocating any good that violates
this to agent il).

For the EQ1 allocation that we would like to construct, for any agent i with
vi(A�

i ) � l+2, we remove goods from A�
i until i’s value for the remaining bundle

is l+1. We allocate the removed goods to agent il (that has marginal value 0 for
these goods). Let B be the resulting allocation. Then clearly, if vi(A�

i ) ∈ {l, l+1},
then vi(Bi) = vi(A�

i ), else vi(Bi) = l+1. Thus, allocation B, our truncated NSW
allocation, is EQ1.

Theorem 1 (�). For any p ∈ R∪ {−∞} and binary submodular valuations, the
p-mean welfare of the truncated allocation B is at least that of any other EQ1
allocation.

4 Lower Bounds on the PoE for Binary Additive
Valuations

Theorem 2 (PoE lower bounds). Let s := r − 1. The price of equity for
binary additive valuations is at least:

1. s, for p = 1,
2. p

es, for p ∈ (0, 1),
3. s

e ln s , for p = 0,
4. 21/ps1/(1−p), for p < 0.

Note that as p → −∞, 21/ps1/(1−p) → 1.

Proof. All our lower bounds are based on varying parameters in a single instance.
The parameters are r, the number of agent types, and W , the normalisation
constant for the agents. Given r, W , the instance has m = rW goods, divided
into r groups of W goods each. The groups are M1, M2, . . ., Mr. There are
W + 1 agents of the first agent type, and 1 agent each of the remaining r − 1
types (thus, n = W + r). Agents of type t have value 1 for the goods in group
Mt, and value 0 for all other goods. The instance is thus disjoint ; no good has
positive value for agents of two different types.

We use Λp to denote the PoE for this instance. Then Λp is exactly

Λp =

(
1

W+r−1 (W × 1p + (r − 1) × W p)
1

W+r−1 (W × 1p + (r − 1) × 1p)

)1/p

=
(

W + s × W p

W + s

)1/p

.
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For each of the cases in the theorem, we will now show how to choose W to
obtain the bound claimed. For p = 1, choose W = s2. For p ∈ (0, 1), choose
W = ps. For p = 0, choose W = s/ ln s. For p < 0, choose W so that W = sW p,
or W = s1/(1−p).

Due to lack of space, we defer the details of the calculations to the full version
[9]. �


5 Upper Bounds on the PoE for Binary Additive
Valuations

5.1 Upper Bounds on the PoE for p = 1

Theorem 3 ((�) Utilitarian PoE upper bound). Under binary additive
valuations and utilitarian welfare as the objective, the price of equity is at most
the rank of the instance.

It follows immediately from the theorem that the PoE is also bounded by
the number of agent types.

Corollary 2. Under binary additive valuations and utilitarian welfare as the
objective, the price of equity is at most r, the number of agent types.

5.2 Upper Bounds on the PoE for p < 1

From Proposition 2 and Theorem 1, to bound the PoE for any p < 1, it suffices to
obtain an upper bound on the ratio of the p-mean welfare for the two allocations
A� (which maximizes the Nash welfare) and B (the truncated allocation). We
will use various properties of the allocations A� and B in the following proofs.
To state these, define Tk as the set of agents of type k, and let Sk be the
set of goods allocated to agents in Tk by A�. That is, Sk := ∪i∈Tk

A�
i . Let

mk := |Sk|, and nk := |Tk|. Then note that for each agent i ∈ Tk, vi(A�
i ) =

|A�
i | ∈

{⌊mk

nk

⌋
,

⌈
mk

nk

⌉}
.

We reindex the types in increasing order of the averaged number of goods
assigned by A�, so that mi/ni � mi+1/ni+1. Now define

λ :=

{
�m1

n1
� if m1/n1 is fractional

1 + m1
n1

if m1/n1 is integral .

Thus λ is integral, λ > m1/n1, and λ � 2 (since the p-mean welfare is
only taken over agents with positive valuation, m1 � n1). Note that in A�, the
smallest value of any agent is �m1/n1�, and λ � 1+�m1/n1�. Hence agents with
value at most λ in A� will retain their value in allocation B, while other agents
will have their values truncated to λ. Now let ρ be the highest index so that
λ � mρ/nρ. Thus,

λ �
∑ρ

i=1 mi∑ρ
i=1 ni

. (1)
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As stated above, any agent of type k � ρ will retain their value, i.e., vi(Bi) =
vi(A�

i ) for an agent i of type k � ρ. We claim that agents of the first ρ types
must have got at least W goods under A�.

Claim 3 (�).
∑ρ

i=1 mi � W .

Then from (1) and Claim 3, we obtain

λ � W/

ρ∑

i=1

ni . (2)

We now obtain a general expression for bounding the PoE for all p � 1.
We will then optimize this expression for different ranges of p, to obtain upper
bounds on the PoE.

Lemma 1 (�). The price of equity for p-mean welfare for instances with r types
is at most

1. supα∈[0,1]

(
α + αpsp(1 − α)1−p

)1/p for p < 0

2. supα∈[0,1]

(
sα
1−α

)(1−α)

for p = 0,

3. supα∈[0,1]

(
α + 2pαpsp(1 − α)1−p

)1/p for p ∈ (0, 1).

where as before, s = r − 1.

Theorem 4 ((�) PoE upper bounds). Let s := r − 1. The price of equity for
binary additive valuations is at most

1. 1 + s for p = 1
2. 1 + 2s for p ∈ (0, 1)
3. s

ln(s/e) for p = 0 (i.e., the Nash social welfare)
4. s1/(1−p)2−1/p(−1/p)1/p(p−1) for p ∈ (−1, 0)
5. 2s1/(1−p) for p � −1

6 PoE Bounds for Doubly Normalised Instances

So far, we have considered instances with binary additive normalised valuations,
where each agent values the same number W of goods. In this case, for the
utilitarian welfare, we have seen that the PoE can be as bad as r, the number
of types of agents. In this section, we consider instances with further structure.
In doubly normalised instances, each good g is valued by the same number Wc

of agents. Thus, vi(M) = W for all i ∈ N , and
∑

i∈N vi(g) = Wc for every good
g ∈ M . The valuation matrix V is thus both row and column normalised. Such
instances are intuitively “balanced,” and we ask if this balance is reflected in the
PoE for such instances. This indeed turns out to be the case.

Theorem 5. For doubly normalised instances under binary additive valuations,
the PoE for the p-mean welfare is 1 for all p � 1.

For an undirected graph, the edge-incident matrix X has entry Xi,e = 1 if
edge e is incident on vertex i, and Xi,e = 0 otherwise. We will use the following
well-known property of edge-incidence matrices for bipartite graphs.
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Proposition 6 (e.g., [32]). If G is a bipartite graph, then the edge-incidence
matrix of G is totally unimodular.

Proof of Theorem 5. Let V be the valuation matrix for a doubly normalised
instance, where each row sums to W and each column sums to Wc. Divide each
entry by Wc. Let V f be the resulting matrix. Then V f satisfies: (i) each entry is
either 0 or 1/Wc, (ii) each column sums to 1, and (iii) each row sums to W/Wc.
We will show that the matrix V f can be represented as the convex combination of
nonnegative integer matrices X1, . . ., Xt so that for any matrix Xk in this decom-
position, each column sums to 1 and each row sums to either �W/Wc� or �W/Wc�.
Assuming such a decomposition, fix any such matrix Xk in this decomposition.
Clearly, due to (ii) and nonnegativity, each entry of Xk is either 1 or 0. Further if
the entry Xk

i,g = 1, then V f
i,g = 1/Wc since V f is a convex combination of the M -

matrices, and hence Vi,g = 1. Consider then the allocation A that assigns good
g to agent i if Xk

i,g = 1. In this allocation, following the properties of Xk, each
good is assigned to an agent that has value 1 for it, and each agent is assigned
either �W/Wc� or �W/Wc� goods. The allocation is thus EQ1 and maximizes the
utilitarian welfare. Further by Proposition 5 this is also a leximin allocation, and
hence by Proposition 4 and Proposition 2 this maximizes the p-mean welfare for
all p � 1, proving the theorem. It remains to show that V can be decomposed as
stated. We defer that to the full version [9]. �


In the full version [9], we offer an alternate proof of Theorem 5, based on a
so-called “eating argument” and an extension of Hall’s theorem.

7 PoE Bounds for Binary Submodular Valuations

We now consider the more general case of binary submodular valuations. Here
we focus on the utilitarian welfare, and show that our results for binary additive
valuations that bound the PoE by the number of types of agents do not extend
to binary submodular valuations. We first show that from prior work (see Propo-
sition 7 below), it follows that if the agents have identical valuations, then PoE
is 1 for the p-mean welfare objective for all p � 1.

Proposition 1 (�). When all agents have identical binary submodular valua-
tions, the PoE is 1 for p-mean welfare measure for all p � 1.

As earlier, an allocation A = (A1, . . . , An) is clean if for all agents i, vi(Ai) =
|Ai|, that is, no good is wastefully allocated. We note that, given any allocation
A, we can obtain a clean (possibly partial) allocation Â so that vi(Ai) = vi(Âi)
for all agents i by repeatedly removing wasted items from the allocation A. We
will use the following result due to Benabbou at al. [7].

Proposition 7 ([7], Corollary 3.8). For binary submodular valuations, any
clean, utilitarian optimal (partial) allocation that minimizes Φ(A) :=

∑
i vi(Ai)2

among all utilitarian optimal allocations is EF1.
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The bound in Proposition 1 is, in a certain sense, the best that can be
obtained. We will now show that with more than one type of agent under binary
submodular valuations, the PoE is at least n/6 for utilitarian welfare. Hence we
cannot obtain bounds on the PoE that depend on the number of agent types for
all p � 1, as we did for binary additive valuations.

Theorem 6 (�). The PoE for utilitarian welfare when agents have binary sub-
modular valuations is at least n/6 (where n is the number of agents), even when
there are just two types of agents.

Theorem 7 (�). For binary submodular valuations and any p � 1, the PoE for
p-mean welfare is at most 2n.

8 Some Concluding Remarks on Chores

Our focus in the paper has been on goods, where agents have non-negative
marginal utility for all items. We briefly remark on the case of bads or chores,
where all marginal utilities are non-positive. Consider any instance with binary
additive valuations, i.e., the value of each item is either 0 or −1. It is not hard to
see that in these instances, there is always a utilitarian optimal EQ1 allocation: if
chore c has value 0 for an agent i, assign c to i. The remaining chores have value
−1 for all agents, and can be assigned using the round robin procedure. This
allocation is clearly EQ1 and also achieves the best possible utilitarian welfare.

For more general additive instances with chores, we now show that the PoE
is unbounded, even in very simple cases.5 To this end, consider the following
example with 2n items and n + 1 agents. The first n agents mildly dislike the
first n chores, at −ε and severely dislike the last n at −1, while it is the opposite
for the (n + 1)th agent, who strongly dislikes the first n items at −1 and mildly
dislikes the last n at −ε. In this example, the maximum utility is −2nε: assign
the first n chores to the first agent and the last n chores to the last agent. On the
other hand, in any EQ1 allocation, the last agent can get at most 2 chores, and
hence some agent gets a chore that they value at −1. The PoE is thus at least
1/(2nε), which can be made arbitrarily large by choosing ε appropriately. Note
that this instance has two item types, two agent types, and only two distinct
entries in the valuation matrix. Relaxing any of these conditions implies identical
valuations, where the PoE is 1; so, in some sense, this is a “minimally complex”
example that already exhibits unbounded PoE. There is thus a sharp change in
the PoE between instances where the values are in {0,−1} and those where the
values are in {−ε,−1}. While the PoE is unbounded as ε approaches 0, it “snaps
back” to 1 at ε = 0.

To conclude, we obtain nearly tight bounds on the PoE in terms of agent types
for the p-mean welfare spectrum. This captures, as special cases, the notions of
5 For chores, we adopt the natural definition of PoE: the ratio of the utilitarian welfare

of the best EQ1 allocation, to the maximum utilitarian welfare obtainable in any
allocation. Note that if the denominator is 0, then so is the numerator (and this can
be identified in polynomial time).
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utilitarian, egalitarian, and Nash welfare. Our bounds are in terms of agent types
(r) rather than the number of agents. Overall, our results provide a fine-grained
perspective on the behavior of the PoE parameterized by p and r. In future work,
it would be interesting to extend the insights that we obtain in this work beyond
the domain of binary valuations. We also propose obtaining bounds on the PoE
parameterized by other structural parameters, such as the number of item types.
We note that for additive valuations, the rank of the valuation matrix is a lower
bound on the number of item types, and hence Theorem 3 bounds the PoE in
this case by the number of item types as well.
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